

Year 12 Alternative Higher School Certificate Trial Examination

Mathematics Extension 1

General Instructions	 Reading time - 10 minutes Working time - 2 hours Write using black pen Calculators approved by NESA may be used A Reference Sheet is provided In Questions 11-14, show relevant mathematical reasoning and/or calculations
Total marks: 70	 Section I 10 marks Attempt Questions 1-10 Use the Multiple Choice answer sheet provided Allow about 15 minutes for this section Section II 60 marks

- Attempt Questions 11-14
- Allow about 1 hour and 45 minutes for this section

Examiners' Use Only Setter/Checker: External/GJD							
Question	Calculus	Functions	Combinatorics	Statistical Analysis	Trigonometric Functions	Vectors	Total
Section I							
1-10	4, 6, 9,10 / 4	2,3,7 / 3	8 /1		1 /1	5 /1	/10
Section II							
11		a,b /5	d /4		c / 2	e /4	/15
12	d / 3	a,e / 5		c /3		b /4	/15
13	a,b,d / 9				c /6		/15
14		c 6	a /4			b /5	/15
Total	/16	/19	/ 9	/3	/ 9	/ 14	/70

Section 1

10 marks

Attempt Questions 1 – 10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10.

- 1 Which of the following expressions is equivalent to $3\cos x \sqrt{3}\sin x$?
 - (A) $2\sqrt{3}\cos\left(x+\frac{\pi}{3}\right)$
 - (B) $2\sqrt{3}\cos\left(x-\frac{\pi}{3}\right)$
 - (C) $2\sqrt{3}\cos\left(x+\frac{\pi}{6}\right)$
 - (D) $2\sqrt{3}\cos\left(x-\frac{\pi}{6}\right)$

2 Which of the following is the correct expansion of $(2x-1)^3$?

- (A) $8x^3 + 12x^2 + 6x 1$
- (B) $8x^3 12x^2 + 6x 1$
- (C) $8x^3 4x^2 + 2x 1$
- (D) $2x^3 12x^2 + 6x 1$

3 The graph of a polynomial y = P(x) is shown below.

What is the minimum possible degree of the polynomial $[P(x)]^2$?

- (A) 2
- (B) 4
- (C) 8
- (D) 16

4 Which of the following is the derivative of $y = x^2 \sin^{-1}(2x)$?

(A)
$$2x\sin^{-1}(2x) + \frac{2x^2}{\sqrt{1-4x^2}}$$

(B)
$$2x\sin^{-1}(2x) + \frac{x^2}{\sqrt{1-4x^2}}$$

(C)
$$2x\sin^{-1}(2x) + \frac{2x^2}{\sqrt{1-2x^2}}$$

(D)
$$2x\sin^{-1}(2x) + \frac{x^2}{\sqrt{1-2x^2}}$$

5 *PQRS* is a quadrilateral where $\overrightarrow{PQ} = \overrightarrow{p}$, $\overrightarrow{QR} = \overrightarrow{q}$, $\overrightarrow{RS} = \overrightarrow{r}$ and $\overrightarrow{SP} = \overrightarrow{s}$

Which of the following is true?

(A) $\vec{p} + \vec{q} = \vec{s} + \vec{r}$

(B)
$$\vec{p} + \vec{q} = -(\vec{s} + \vec{r})$$

(C)
$$\vec{p} + \vec{s} = \vec{q} + \vec{r}$$

(D)
$$\vec{p} + \vec{s} = -(\vec{q} - \vec{r})$$

6

The slope field for a first order differential equation is shown below. Which of the following could be the differential equation represented?

(A)
$$\frac{dy}{dx} = x + y$$

(B) $\frac{dy}{dx} = x - y$
(C) $\frac{dy}{dx} = y - x$
(D) $\frac{dy}{dx} = -xy$

7 Which of the following is the solution set of $\frac{2}{1-3^x} > -1?$

- (A) x < 0
- (B) x < 1
- (C) 0 < x < 1
- (D) x < 0 or x > 1

8

A bag contains 5 identical blue marbles, 6 identical black marbles and 3 identical red marbles. Three marbles are drawn at random.

Which expression below gives the correct probability that exactly two blue marbles are drawn?

(A)
$$\frac{{}^{5}C_{2}}{{}^{14}C_{3}}$$

(B)
$$\frac{{}^{5}C_{2} \times {}^{9}C_{1}}{{}^{14}C_{3}}$$

(C)
$$\frac{2}{5} \times \frac{1}{9}$$

(D)
$$\frac{2}{14} \times \frac{1}{9}$$

Which of the following is the value of $\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{4-4x^{2}}} dx?$

- (A) $\frac{1}{4}$ (B) $\frac{\pi}{12}$ (C) $\frac{\pi}{6}$ (D) 1
- 10 The population, P, of animals, in an environment in which there are scarce resources, is increasing such that $\frac{dP}{dt} = P(100 - P)$, where t is time. The initial population is 20 animals.

Which of the following is true?

(A)
$$P = 100 - 80e^{100t}$$

- (B) The population is increasing most rapidly when P = 50.
- (C) The population is increasing most rapidly when t = 50.
- (D) The maximum population is P = 50.

9

Section II

60 marks

Attempt Questions 11 – 14

Allow about 1 hour and 45 minutes for this section

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

In questions 11 – 14, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Use a SEPARATE writing booklet.

(a) Given
$$P(x) = x^3 - 5x^2 + 8x - 4$$
,
(i) Find $P(1)$.

- 2
- (ii) Factorise P(x)

(b)

(i)

The diagram above shows the function $f(x) = \frac{1}{x^2 + 1}$ for $x \ge 0$.

State the domain and range of the inverse function $f^{-1}(x)$.

(c) Given
$$\cos x = -\frac{1}{3}$$
 and $\sin x > 0$ find the exact value of $\sin 2x$.

2

1

2

Question 11 continues on page 8

Question 11 (continued)

- (d) Ten members of a sporting team have the numbers 1 to 10 on the back of their jumpers.
 - (i) Explain why, if six players are randomly chosen,there must be at least one pair of players whose numbersadd to 11.

2

2

- (ii) What is the minimum number of players that need to be chosen to ensure that at least one pair of players have numbers that add to 12?
- (e) A projectile is fired from horizontal ground such that horizontal and vertical displacements (in metres) from the point of projection, at time *t* seconds, are given by $x = (30\sqrt{3})t$ and $y = 30t 5t^2$.
 - (i) Find the angle at which the projectile was fired. 3
 - (ii) Find the speed at which the projectile was fired. 1

Question 12 on page 9

Question 12 (15 marks) Use a SEPARATE writing booklet.

(a)

2

The graph above shows $y = 2\cos^{-1}(2x-3)$.

Find the coordinates of point *A*.

(b) (i) The vectors
$$\vec{p} = \begin{pmatrix} a \\ 3 \end{pmatrix}$$
 and $\vec{q} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$ are parallel. 1
Find *a*.

(ii) The vector
$$\vec{r} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 is perpendicular to vector \vec{q} and 3

$$\left| \vec{q} - \vec{r} \right| = \sqrt{65}$$
. Find the possible values of x and y.

(c) The probability that a certain drug cures a disease is 0.8. The drug is administered to 10 000 patients.

Let *X* be the binomial random variable representing the number of patients cured.

(i)	Find $E(X)$.	1
(ii)	Show that <i>X</i> has a standard deviation of 40.	1
(iii)	Use a normal approximation to find the probability	1
	that X is less than 8040.	

Question 12 continues on page 10

Question 12 (continued)

(d) A curve has gradient given by
$$\frac{dy}{dx} = 2xy$$
. Find an expression for **3**

y in terms of x given that the curve passes through the point (0,4)

$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n} \quad \text{for integers } n \ge 1$$

Question 13 on page 11

Question 13 (15 marks) Use a SEPARATE writing booklet.

(a) Find
$$\int_{0}^{\frac{\pi}{2}} \sin^2 x \cos x \, dx$$
 2

(b) Use the substitution
$$x = 2\sin\theta$$
 to find $\int_0^1 \sqrt{4-x^2} dx$. 3

(c) (i) Show
$$\sin(x-y)\sin(x+y) = \sin^2 x - \sin^2 y$$
. 3

(ii) Solve
$$\sin^2 3x - \sin^2 x = \sin 4x$$
 for $0 \le x \le \pi$ 3

(d) The shaded area in the diagram below is bounded by $y = (x-1)^2$ 4 and y = x+1. The area is rotated around the *x*-axis to form a solid. Find the volume of the solid generated.

Question 14 on page12

Question 14 (15 marks) Use a SEPARATE writing booklet.

(a) (i) Use the identity

$$(1+x)^{n+m} = (1+x)^n (1+x)^m$$
to show that, if m > n,

$$\binom{n}{0} \binom{m}{n} + \binom{n}{1} \binom{m}{n-1} + \binom{n}{2} \binom{m}{n-2} + \cdots \binom{n}{n} \binom{m}{0} = \binom{m+n}{n}$$

- (ii) Simon has n white canaries and m yellow canaries, where m > n.
 2 He wants to move n canaries, with at least one of each colour, to a new cage.
 What is the number of ways this could be done?
- (b) In the diagram, *M* is the midpoint of the side *BC* of triangle ABC. Let $\overrightarrow{AB} = \underset{\sim}{a}$ and $\overrightarrow{AC} = \underset{\sim}{b}$.

Copy the diagram.

(i) Find the vectors \overrightarrow{AM} and \overrightarrow{CM} in terms of *a* and *b*. 2

(ii) Show that
$$|\overrightarrow{AM}|^2 + |\overrightarrow{CM}|^2 = \frac{1}{2} \left(|\overrightarrow{AB}|^2 + |\overrightarrow{AC}|^2 \right)$$
 3

(c) (i) Show that
$$8\cos^4\theta - 8\cos^2\theta + 1 - \cos 4\theta = 0.$$
 2

(ii) By letting
$$x = \cos \theta$$
 in the equation $16 x^4 - 16 x^2 + 2 - \sqrt{2} = 0$, 2
show that $\cos 4\theta = \frac{\sqrt{2}}{2}$.

(iii) Prove that
$$\cos^2 \frac{\pi}{16} \cos^2 \frac{7\pi}{16} = \frac{2 - \sqrt{2}}{16}$$
.

End of Examination

SUGGESTED SOLUTIONS 2021 Mathematics Extension 1 Trial HSC Examination

Section 1

10 marks

Questions 1 – 10 (1 mark each)

Question 1 (1 mark)

Outcomes assessed: ME11-3

Targeted Performance Bands: E2

Solution	Answer	Mark
$2\sqrt{3}\cos\left(x+\frac{\pi}{6}\right) = 2\sqrt{3}\left(\cos x \cos\frac{\pi}{6} - \sin x \sin\frac{\pi}{6}\right)$	С	1
$= 2\sqrt{3} \left(\frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x \right)$		
$= 3\cos x - \sqrt{3}\sin x$		

Question 2 (1 mark)

Outcomes assessed: ME11-2

Targeted Performance Bands: E2-E3

Solution	Answer	Mark
$(2x-1)^{3} = (2x+(-1))^{3}$ $= (2x)^{3} + 3(2x)^{2}(-1) + 3(2x)(-1)^{2} + (-1)^{3}$	В	1
$= 8x^{3} - 12x^{2} + 6x - 1$		

Question 3 (1 mark)

Outcomes Assessed: ME11-2

Targeted Performance Bands: E2-E3

Solution	Answer	Mark
Minimum degree of $P(x)$ is 4	C	1
$\therefore \text{Minimum degree of } \left[P(x) \right]^2 \text{ is } 2 \times 4 = 8$	C	1

Question 4 (1 mark)

Outcomes assessed: ME12-1

Targeted Performance Bands: E2

Solution	Answer	Mark
$y = x^2 \sin^{-1}(2x)$	Α	1
$\frac{dy}{dx} = 2x(\sin^{-1}(2x)) + x^2\left(\frac{1}{\sqrt{1 - (2x)^2}} \times 2\right)$		
$= 2x\sin^{-1}(2x) + \frac{2x^2}{\sqrt{1-4x^2}}$		

Question 5 (1 mark)

Outcomes assessed: ME12-2

Targeted Performance Bands: E3

Solution	Answer	Mark
$\vec{p} + \vec{q} + \vec{r} + \vec{s} = 0$ $\vec{p} + \vec{q} = -(\vec{s} + \vec{r})$	В	1

Question 6 (1 mark)

Outcomes assessed: ME12-1, ME12-4

Targeted Performance Bands: E3

Solution	Answer	Mark
	В	1

Question 7 (1 mark)

Outcomes Assessed: ME11-2

Targeted Performance Bands: E4

Solution	Answer	Mark
$\frac{2}{1-3^x} > -1$ Let $u = 1-3^x$	D	1
$\frac{2}{-} > -1$		
u		
multiply both sides by u^2		
$2u > -u^2$		
$2u + u^2 > 0$		
u(2+u) > 0		
u < -2 or $u > 0$		
$1 - 3^x < -2$ or $1 - 3^x > 0$		
$1 - 3^x < -2 \Longrightarrow 3^x > 3$		
$1-3^x > 0 \Longrightarrow 3^x < 1$		
$\therefore x < 0 \text{ or } x > 1$		

Question 8 (1 mark)

Outcomes Assessed: ME11-5

Targeted Performance Bands: E3

Answer	Mark
D	
В	1
	Answer B

Question 9 (1 mark)

Outcomes Assessed: ME12-1

Targeted Performance Bands: E3-E4

Solution	Answer	Mark
$\int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{4-4x^{2}}} dx = \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{1}{\sqrt{1-x^{2}}} dx$	В	1
$=\frac{1}{2}\left[\sin^{-1}x\right]_{0}^{\frac{1}{2}}$		
$=\frac{1}{2}\left[\frac{\pi}{6}-0\right]$		
$=\frac{\pi}{12}$		

Question 10 (1 mark)

Outcomes assessed: ME11-4

Targeted Performance Bands: E4

Solution	Answer	Mark
$\frac{dP}{dt}$ has maximum value when $P = 50$	В	1
∴population is increasing most rapidly		
when $P = 50$.		

Question 11 (15 marks)

(a) (i) (1 mark)

Outcomes assessed: ME11-1

Targeted Performance Bands: E2

Criteria	Marks
Correctly shows the result.	1

$$P(1) = 1 - 5 + 8 - 4 = 0$$

(a) (ii) (2 marks)

Outcomes assessed: ME11-1

Targeted Performance Bands: E2

Criteria	Marks
• Correct factorisation.	2
• Recognises that $(x-1)$ is a factor of $P(x)$ and makes some attempt	1
to factorise.	

Sample answer:

$$\frac{x^2 - 4x + 4}{(x-1)\sqrt{x^3 - 5x^2 + 8x - 4}}$$
$$P(x) = (x-1)(x-2)^2$$

(b) (2 marks)

Outcomes assessed: ME11-3

Targeted Performance Bands: E3

Criteria	Marks
Correct Range	2
Correct Domain.	1

$$D_{f^{-1}} = R_f \Longrightarrow : D_{f^{-1}} : 0 < x \le 1$$
$$R_{f^{-1}} = D_f \Longrightarrow R_{f^{-1}} : y \ge 0$$

(c) (2 marks)

Outcomes assessed: ME11-3

Targeted Performance Bands: E3

Criteria	Marks
• Correct answer.	2
• Finds the value of sin x or equivalent progress.	1

Sample answer:

$$\cos x = -\frac{1}{3}$$

$$\sin^2 x = 1 - \cos^2 x = \frac{8}{9}$$

$$\sin x = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \text{ (given } \sin x > 0\text{)}$$

$$\sin 2x = 2\sin x \cos x = 2 \times \left(-\frac{1}{3}\right) \times \frac{2\sqrt{2}}{3} = -\frac{4\sqrt{2}}{9}$$

(d) (i) (2 marks)

Outcomes assessed: ME11-5, ME12-7

Targeted Performance Bands: E3

Criteria	Marks
Provides correct explanation.	2
• Identifies that there are 5 pairs that give a sum of 11.	1

Sample answer:

Each number has a "partner" to give a total of 11

There are 5 pairs that give a total of 11:

That is: 5 pigeonholes

: by the pigeonhole principle, if 6 players are chosen

there will be at least one pair that gives a sum of 11.

(d) (ii) (1 mark)

Outcomes assessed: ME11-5, ME12-7

Targeted Performance Bands: E3

Criteria	Marks
• Correct answer	2
• Recognises that there are some numbers that don't have "pair" to sum to 12.	1

Sample answer:

The numbers "1" and "6"do not have a "partner" to give a total of 12 There are 4 pairs that give a total of 12:

(2,10);(3,9);(4,8);(5,7)

Will need to choose 7 players.

(e) (i) (3 marks)

Outcomes assessed: ME12-2

Targeted Performance Bands: E3-E4

Criteria	Marks
• Correct answer.	3
Correctly determines initial vertical and horizontal velocities.	2
• Makes some progress (e.g. makes some attempt to find initial velocities.	1

Sample answer:

$$x = 30\sqrt{3} t \Rightarrow \frac{dx}{dt} = 30\sqrt{3}$$
$$y = 30t - 5t^2 \Rightarrow \frac{dy}{dt} = 30 - 10t$$
when $t = 0$, $\frac{dy}{dt} = 30$

if θ is the angle of projection, then

$$\tan \theta = \frac{30}{30\sqrt{3}} = \frac{1}{\sqrt{3}}$$
$$\theta = 30^{\circ}$$

(e) (ii) (1 mark)

Outcomes assessed: HE3

Targeted Performance Bands: E3-E4

Criteria	Marks
• Correct answer	1

Sample answer:

If initial speed is V then $V^{2} = 30^{2} + (30\sqrt{3})^{2}$ $V = 60 \, ms^{-1}$

Question 12 (15 marks)

(a) (2 marks)

Outcomes Assessed: ME11-3

Targeted Performance Bands: E2-E3

Criteria	Marks
• Correct answer.	2
• Finds correct domain or range or equivalent.	1

For
$$y = 2\cos^{-1}(2x-3)$$

 $D:-1 \le 2x-3 \le 1$
 $2 \le 2x \le 4$
 $1 \le x \le 2$
 $R:0 \le y \le 2\pi$
 $\therefore A \text{ is } (1,2\pi)$

(b) (i) (1 mark)

Outcomes assessed: ME12-2

Targeted Performance Bands: E2

Criteria	Marks
• Correct answer.	1

Sample answer:

$$Parallel \Rightarrow \lambda \begin{pmatrix} a \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$
$$3\lambda = 4 \Rightarrow \lambda = \frac{4}{3}$$
$$\frac{4}{3}a = 2$$
$$a = \frac{3}{2}$$

(b) (ii) (3 marks)

Outcomes assessed: ME12-2

Targeted Performance Bands: E3

Criteria	Marks
Correct answer	3
• Writes correct expression for $ \vec{q} - \vec{r} $	2
• Recognises that the dot product is zero.	1

Perpendicular
$$\Rightarrow \lambda \begin{pmatrix} 2 \\ 4 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = 0$$

 $2x + 4y = 0$
 $x = -2y$
 $\vec{q} - \vec{r} = \begin{pmatrix} 2-x \\ 4-y \end{pmatrix} = \begin{pmatrix} 2+2y \\ 4-y \end{pmatrix}$
 $|\vec{q} - \vec{r}| = \sqrt{65} \Rightarrow \sqrt{(2+2y)^2 + (4-y)^2} = \sqrt{65}$
squaring
 $4 + 8y + 4y^2 + 16 - 8y + y^2 = 65$
 $5y^2 + 20 = 65$
 $y^2 = 9$
 $y = \pm 3$
 $\therefore x = 6, y = -3 \text{ or } x = -6, y = 3$

(c) (i) (1 mark)

Outcomes assessed: ME12-5

Targeted Performance Bands: E2

Criteria	Marks
• Correct answer.	1

Sample answer:

$$E(X) = np = 10000 \times 0.8 = 8000$$

(c) (ii) (1 mark)

Outcomes assessed: ME12-5

Targeted Performance Bands: E2

Criteria	Marks
Correctly shows the result	1

$$Var(X) = np(1-p)$$

= 10000 × 0.8 × 0.2
= 1600
$$\sigma = \sqrt{1600} = 40$$

(c) (iii) (1 mark)

Outcomes assessed: ME12-5

Targeted Performance Bands: E3

Criteria	Marks
• Correct answer.	1

Sample answer:

$$P(X < 8040) = P(Z < 1)$$

= 0.5 + 0.34
= 0.84

(d) 3 marks

Outcomes assessed: ME12-1, ME12-4

Targeted Performance Bands: E3

Criteria	Marks
• Correct answer.	3
Correct integration	2
• Separates the differential equation and makes some attempt to	1
integrate.	1

$$\frac{dy}{dx} = 2xy$$

$$\frac{1}{y}dy = 2xdx$$

$$\int \frac{1}{y}dy = \int 2xdx$$

$$\log_e y = x^2 + c$$
Passes through (0,4) $\Rightarrow c = \log_e 4$

$$\log_e y = x^2 + \log_e 4$$

$$\log_e y - \log_e 4 = x^2$$

$$\log_e \frac{y}{4} = x^2$$

$$y = 4e^{x^2}$$

(b) (3 marks)

Outcomes assessed: ME12-1; ME12-7

Targeted Performance Bands: E3 – E4

Criteria	Marks
• Correctly proves the result.	3
• Uses the correct assumption step in attempting to prove the statement is true for <i>n</i> = <i>k</i> + 1	2
• Correctly proves that the statement is true when $n = 1$.	1

Sample answer:

Step1 Prove true for n = 1

$$LHS = \frac{1}{2}$$

RHS = $2 - \frac{1+2}{2} = \frac{1}{2}$
 \therefore true for $n = 1$

Step 2 Let n = k be a value for which the statement is true ie

 $\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{k}{2^k} = 2 - \frac{k+2}{2^k}$

Step 3 Prove true for n = k + 1

i.e prove

$$\begin{aligned} \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \dots + \frac{k}{2^k} + \frac{k+1}{2^{k+1}} &= 2 - \frac{(k+1)+2}{2^{k+1}} = 2 - \frac{k+3}{2^{k+1}} \\ LHS &= 2 - \frac{k+2}{2^k} + \frac{k+1}{2^{k+1}} \\ &= 2 - \left(\frac{2(k+2)}{2^{k+1}} - \frac{k+1}{2^{k+1}}\right) \\ &= 2 - \left(\frac{2k+4-k-1}{2^{k+1}}\right) \\ &= 2 - \frac{k+3}{2^{k+1}} \text{ as required.} \end{aligned}$$

∴true by mathematical induction

Question 13 (15 marks)

(a) (2 marks)

Outcomes assessed: ME12-1

Targeted Performance Bands: E3

Criteria	Marks
Correct answer	2
Chooses appropriate substitution.	1

Sample answer:

Let $u = \sin x$

$$\int_{0}^{\frac{\pi}{2}} \sin^{2} x \cos x \, dx = \int_{0}^{1} u^{2} \, du$$
$$= \left[\frac{u^{3}}{3}\right]_{0}^{1} = \frac{1}{3}$$

(b) (3 marks)

Outcomes Assessed: ME12-4

Targeted Performance Bands: E4

Criteria	Marks
• correct answer	3
• correct final integral	2
• any correct attempt	1

$$x = 2\sin\theta$$

$$\frac{dx}{d\theta} = 2\cos\theta$$

$$x = 0 \Rightarrow \theta = 0$$

$$x = 1 \Rightarrow \theta = \frac{\pi}{6}$$

$$\int_{0}^{1} \sqrt{4 - x^{2}} \, dx = \int_{0}^{\frac{\pi}{6}} \sqrt{4 - 4\sin^{2}\theta} \times 2\cos\theta \, d\theta$$

$$= \int_{0}^{\frac{\pi}{6}} 2\cos\theta \times 2\cos\theta \, d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{6}} \cos^{2}\theta \, d\theta$$

$$= 4 \int_{0}^{\frac{\pi}{6}} \frac{1}{2} (1 + \cos 2\theta) \, d\theta$$

$$= 2 \left[\theta + \frac{1}{2}\sin 2\theta \right]_{0}^{\frac{\pi}{6}}$$

$$= 2 \left[\frac{\pi}{6} + \frac{1}{2}\sin \frac{\pi}{3} \right]_{0}^{\frac{\pi}{6}}$$

$$= \frac{\pi}{3} + \frac{\sqrt{3}}{2}$$

(c) (i) (3 marks)

Outcomes Assessed: ME12-3

Targeted Performance Bands: E4

Criteria	Marks
• Correctly shows the result.	3
• Makes some correct use of cos 2x results or equivalent progress.	2
• Makes some use of "products to sums" results or equivalent progress.	1

$$\sin(x-y)\sin(x+y) = \frac{1}{2} \Big[\cos \Big[(x-y) - (x+y) \Big] - \cos \Big[(x-y) + (x+y) \Big] \Big]$$
$$= \frac{1}{2} \Big[\cos(-2y) - \cos(2x) \Big]$$
$$= \frac{1}{2} \Big[\cos(2y) - \cos(2x) \Big]$$
$$= \frac{1}{2} \Big[(1 - 2\sin^2 y) - (1 - 2\sin^2 x) \Big]$$
$$= \sin^2 x - \sin^2 y$$

(c) (ii) (3 marks)

Outcomes Assessed: ME12-3

Targeted Performance Bands: E4

Criteria	Marks
• Correctly solves the equation.	3
• Finds one correct non-zero solution.	2
• Correctly uses the result from (i) to transform equation.	1

From (i)
$$\sin^2 3x - \sin^2 x = \sin (3x - x) \sin (3x + x) = \sin 2x \sin 4x$$

 $\sin 2x \sin 4x = \sin 4x$ for $0 \le x \le \pi$
 $\sin 2x \sin 4x - \sin 4x = 0$
 $\sin 4x (\sin 2x - 1) = 0$
 $\sin 4x = 0 \Longrightarrow 4x = 0, \pi, 2\pi, 3\pi, 4\pi$
 $x = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi$
 $\sin 2x = 1 \Longrightarrow 2x = \frac{\pi}{2} \Longrightarrow x = \frac{\pi}{4}$
 $\therefore x = 0, \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}, \pi$

(d) (4 marks)

Outcomes Assessed: ME12-4

Targeted Performance Bands: E4

Criteria	Marks
Provides correct answer.	4
Makes further progress finding integral.	3
• Writes correct integral expression for the volume.	2
Finds correct points of intersection	1

For point of intersection

$$x+1 = (x-1)^{2}$$

$$x+1 = x^{2} - 2x + 1$$

$$x^{2} - 3x = 0$$

$$x = 0, x = 3$$

$$V = \pi \int_{0}^{3} (x+1)^{2} - [(x-1)^{2}]^{2} dx$$

$$= \pi \int_{0}^{3} (x+1)^{2} - (x-1)^{4} dx$$

$$= \pi \left[\frac{(x+1)^{3}}{3} - \frac{(x-1)^{5}}{5} \right]_{0}^{3}$$

$$= \pi \left[\left(\frac{64}{3} - \frac{32}{5} \right) - \left(\frac{1}{3} - \frac{1}{5} \right) \right]$$

$$= \frac{74\pi}{5} units^{3}$$

Question 14 (15 marks)

Sample answer:

(a) i)
$$(1+x)^n = \binom{n}{0}x^0 + \binom{n}{1}x^1 + \binom{n}{2}x^2 + \dots + \binom{n}{n-1}x^{n-1} + \binom{n}{n}x^n$$

As m > n this means $(1 + x)^m$ has more terms than $(1 + x)^n$.

$$(1+x)^m = \binom{m}{0}x^0 + \binom{m}{1}x^1 + \binom{m}{2}x^2 + \dots + \binom{m}{n}x^n \dots \dots + \binom{m}{m-1}x^{m-1} + \binom{m}{m}x^m$$

In the expansion of $(1 + x)^n (1 + x)^m$, each term in the expansion of $(1 + x)^n$ will be multiplied by each term in the expansion of $(1 + x)^m$.

To show that the required statement is true, we must equate the coefficients of x^n in the expansions of $(1 + x)^n (1 + x)^m$ and $(1 + x)^{n+m}$

The coefficient of x^n in the expansion of

 $(1 + x)^n (1 + x)^m$ is found by multiplying each term in the expansion of $(1 + x)^n$ by the corresponding term in the expansion of $(1 + x)^m$, such that the sum of the powers of x is n.

Hence, the corresponding coefficients of x^n will be

$$\binom{n}{0}\binom{m}{n} + \binom{n}{1}\binom{m}{n-1} + \binom{n}{2}\binom{m}{n-2} + \binom{n}{3}\binom{m}{n-3} + \dots + \binom{n}{n-1}\binom{m}{1} + \binom{n}{n}\binom{m}{0}$$

In the expansion of $(1+x)^{n+m}$, the coefficient of x^n will be $\binom{m+n}{n}$. Hence,
 $\binom{n}{0}\binom{m}{n} + \binom{n}{1}\binom{m}{n-1} + \dots + \binom{n}{n}\binom{m}{0} = \binom{m+n}{n}$

ii) The number of different combinations possible for n canaries from n white and m yellow canaries is

$$\binom{n}{0}\binom{m}{n} + \binom{n}{1}\binom{m}{n-1} + \dots + \binom{n}{n}\binom{m}{0}$$

From the previous part of this question this would be equivalent to :- $\binom{m+n}{n}$

As Simon must have at least one canary of each colour, no white and n yellow $\binom{n}{0}\binom{m}{n}$, n white and no yellow $\binom{n}{n}\binom{m}{0}$ are not acceptable. Hence, the number of ways Simon could select n canaries, ensuring there was at least one of each colour is

$$\binom{m+n}{n} - \binom{n}{0}\binom{m}{n} - \binom{n}{n}\binom{m}{0}$$
 As $\binom{n}{n} = 1$, $\binom{m}{0} = 1$ and $\binom{n}{0} = 1$ then the number of ways is

$$\binom{m+n}{n} - 1 \times \binom{m}{n} - 1 \times 1 = \binom{m+n}{n} - \binom{m}{n} - 1$$

b) i) $\overrightarrow{AM} = \underset{\sim}{a} + \overrightarrow{BM}$ (1)

also $\overrightarrow{AM} = b + \overrightarrow{CM}$ and as $\overrightarrow{CM} = -\overrightarrow{BM}$ then $\overrightarrow{AM} = b - \overrightarrow{BM}$ (2) By adding (1) and (2), we get $2\overrightarrow{AM} = a + b$ that is

$$\overrightarrow{AM} = \frac{1}{2}(\underline{\alpha} + \underline{b})$$

$$\overrightarrow{CM} = -\underline{b} + \overrightarrow{AM}$$

$$\overrightarrow{CM} = -\underline{b} + \frac{1}{2}(\underline{a} + \underline{b})$$

$$\overrightarrow{CM} = -\underline{b} + \frac{1}{2}\underline{a} + \frac{1}{2}\underline{b}$$

$$\overrightarrow{CM} = -\underline{b} + \frac{1}{2}\underline{a} + \frac{1}{2}\underline{b}$$

$$\overrightarrow{CM} = \frac{1}{2}\underline{a} - \frac{1}{2}\underline{b}$$

$$\overrightarrow{CM} = \frac{1}{2}(\underline{a} - \underline{b})$$
ii) LHS = $|\overrightarrow{AM}|^2 + |\overrightarrow{CM}|^2$

$$= \frac{1}{2}(\underline{a} + \underline{b}) \cdot \frac{1}{2}(\underline{a} + \underline{b}) + \frac{1}{2}(\underline{a} - \underline{b}) \cdot \frac{1}{2}(\underline{a} - \underline{b})$$

$$= \frac{1}{4}(\underline{a} + \underline{b})^2 + \frac{1}{4}(\underline{a} - \underline{b})^2$$

$$= \frac{1}{4}(|\underline{a}|^2 + 2\underline{a}\underline{b} + |\underline{b}|^2 + |\underline{a}|^2 - 2\underline{a}\underline{b} + |\underline{b}|^2)$$

$$= \frac{1}{2}(|\underline{a}|^2 + |\underline{b}|^2)$$

$$= \frac{1}{2}(|\underline{a}|^2 + |\underline{b}|^2)$$

$$= \frac{1}{2}(|\overrightarrow{AB}|^2 + |\overrightarrow{AC}|^2)$$

$$= RHS$$

c) i)
$$cos4\theta = 2cos^{2}2\theta - 1$$
$$cos4\theta = 2(2cos^{2}\theta - 1)^{2} - 1$$
$$cos4\theta = 2(4cos^{4}\theta - 4cos^{2}\theta + 1) - 1$$
$$cos4\theta = 8cos^{4}\theta - 8cos^{2}\theta + 2 - 1$$
$$cos4\theta = 8cos^{4}\theta - 8cos^{2}\theta + 1$$
$$0 = 8cos^{4}\theta - 8cos^{2}\theta + 1 - cos4\theta$$

- ii) $cos4\theta = 8cos^{4}\theta 8cos^{2}\theta + 1$ $2cos4\theta = 16cos^{4}\theta - 16cos^{2}\theta + 2$ By substituting $16cos^{4}\theta - 16cos^{2}\theta + 2 - \sqrt{2} = 0$ from above, we get $2cos4\theta - \sqrt{2} = 0$ $2cos4\theta = \sqrt{2}$ $cos4\theta = \frac{\sqrt{2}}{2}$
- iii) From part ii) the solution to the equation $16\cos^4\theta - 16\cos^2\theta + 2 - \sqrt{2} = 0$ can be found from $\cos 4\theta = \frac{\sqrt{2}}{2}$ $\cos 4\theta = \cos \frac{\pi}{4}$ $4\theta = \frac{\pi}{4} + 2n\pi$ or $4\theta = -\frac{\pi}{4} + 2n\pi$

 $\theta = \frac{\pi}{16} + \frac{n\pi}{2} \quad or \quad \theta = -\frac{\pi}{16} + \frac{n\pi}{2}$ when n = 0, $\theta = \frac{\pi}{16}$ or when n = 0, $\theta = -\frac{\pi}{16}$ when n = 1, $\theta = \frac{9\pi}{16}$ or when n = 1, $\theta = \frac{7\pi}{16}$ when n = 2, $\theta = \frac{17\pi}{16}$ or when n = 2, $\theta = \frac{15\pi}{16}$ when n = 3, $\theta = \frac{25\pi}{16}$ or when n = 3, $\theta = \frac{23\pi}{16}$

There is an infinite number of possible values for the angle θ . The four lines above show a few of these possible values.

As the equation $16 x^4 - 16 x^2 + 2 - \sqrt{2} = 0$ has a degree 4 it should have at maximum four real roots which mean four possible values for $\cos \theta$ regardless of the possible values of θ . Hence, we need to find four different values for $\cos \theta$ using the possible values for angle θ found above as they are the four roots of this equation.

The four different values of $\cos \theta$ or the four

roots of the quartic equation are

$$\cos \frac{\pi}{16}, \cos \frac{15\pi}{16}, \cos \frac{7\pi}{16} \text{ and } \cos \frac{23\pi}{16}$$

The product of these roots is $\frac{2 - \sqrt{2}}{16}$.
This means
 $\cos \frac{\pi}{16} \cos \frac{15\pi}{16} \cos \frac{7\pi}{16} \cos \frac{23\pi}{16} = \frac{2 - \sqrt{2}}{16}$
Now, $as \cos \frac{15\pi}{16} = -\cos \frac{\pi}{16}$ and $\cos \frac{23\pi}{16} = -\cos \frac{7\pi}{16}$ this means
 $\cos \frac{\pi}{16} \times -\cos \frac{\pi}{16} \cos \frac{7\pi}{16} \times -\cos \frac{7\pi}{16} = \frac{2 - \sqrt{2}}{16}$
Hence, $\cos^2 \frac{\pi}{16} \cos^2 \frac{7\pi}{16} = \frac{2 - \sqrt{2}}{16}$

Alternative method

From part ii) the solution to the equation $16\cos^4\theta - 16\cos^2\theta + 2 - \sqrt{2} = 0$ can be found from $\cos 4\theta = \frac{\sqrt{2}}{2}$ So $4\theta = \frac{\pi}{4}, \frac{7\pi}{4}, \frac{9\pi}{4}, \frac{15\pi}{4}$ $\therefore \theta = \frac{\pi}{16}, \frac{7\pi}{16}, \frac{9\pi}{16}, \frac{15\pi}{16}$ are solutions to the equation. But $16\cos^4\theta - 16\cos^2\theta + 2 - \sqrt{2} = 0$ can be reduced to the quadratic $16m^2 - 16m + 2 - \sqrt{2} = 0$ where $m = \cos^2\theta$ As $\theta = \frac{\pi}{16}, \frac{7\pi}{16}, \frac{9\pi}{16}, \frac{15\pi}{16}$ are solutions to the initial trig equation, $\cos^2\frac{\pi}{16}$ and $\cos^2\frac{7\pi}{16}$ will be roots of this new equation.

The product of the roots of a quadratic equation is

equal to the constant term, divided by the coefficient of m^2 ,

Hence, $\cos^2 \frac{\pi}{16} \cdot \cos^2 \frac{7\pi}{16} = \frac{2-\sqrt{2}}{16}$